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1 INTRODUCTION

1 Introduction

The paradigm of Aspect Oriented Programming (AOP) has emerged in recent years as a potential
measure to alleviate the complexity of software design and maintenance. AOP is readily applicable to
object oriented software, although adoption has been sporadic to date. The best known implementa-
tion is AspectJ[2] (for the Java ecosystem), which can be considered a reference implementation for
aspect oriented programming.

AOP is essentially a disciplined, methodical way of injecting code into existing source files. It is defined
by AspectJ as an out-of-band code transformation with a separate compiler, taking the original source
files, plus the so called “aspect code” (which defines these injections, and is still Java code) to produce
standard Java class files. The advantage is clear: the original source is untouched, and aspect code
can add new behaviors which can be turned on or off just by moving between the Java compiler
and the AspectJ compiler. This has obvious advantages as a step between development/testing and
production.

AOP defines a nomenclature for code injection.

1. Code injection is possible at certain well defined points, such as before a method call, after a
method body etc. These points are called join points.

2. Code injection is declared in units called advice, which provide the code to be injected.

3. Advice are matched against join points using string matching (globbing or regular expressions).
Every advice has a matching string, and it is called a pointcut.

4. Advice are collected in classes (or other executable units) called aspects.

1.1 AOP in Python

Unlike AspectJ in Java, Python does not have a canonical AOP framework. It can be debated to what
extent aspect oriented practices are useful or applicable to Python’s dynamic nature. Nevertheless,
there have been a number of projects to enable aspect oriented programming in Python.

The following framworks are covered in this paper.

1. aopy[1]

2. Aspyct[3]

3. Lightweight Python AOP[4]

4. Logilab aspects[5]

5. PEAK[6]

6. Pythius[7]

7. Spring Python[8]

The following framworks are not covered.

1. PyPy AOP[9]

Aspect oriented programming in PyPy is an AOP extension for the PyPy compiler environment and
is thus not on equal footing with the other implementations, all of which require only CPython.
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1.2 Scope

It is my mission in this paper to examine a number of different strategies for AOP in Python, and
relate how different implementations have leveraged these.

It is the focus of this paper to explore the strategies behind code injection applied to aspect oriented
programming. The paper does not serve as a general review of the various frameworks in order to
provide a scoresheet. Instead, it is my view that the injection (or hook) mechanism itself – that
which makes code injection possible – is the crucial and defining property of any aspect oriented
approach, and is therefore my focus. Outside of this I make no attempt to assess the merits of the
implementations presented.

2 Useful language facilities

Python has a couple of language features that promote aspect oriented programming in that they
provide access to the underlying data structure without disrupting the interface. In other words, they
are means of instrumentation that are invisible to clients of the code. The various AOP frameworks
use these features widely.

2.1 Properties

Properties enable an indirection on access to variables of class instances.1 The following example
serves to illustrate.

1 class Class(object ):
2 def __init__(self):
3 self.att = 1
4
5 def _get_(self):
6 print "get", self._att
7 return self._att
8
9 def _set_(self , value):

10 print "set", value
11 self._att = value
12
13 def _del_(self):
14 print "del"
15
16 att = property(fget=_get_ , fset=_set_ , fdel=_del_)
17
18 cls = Class()
19 #> set 1

20 print cls.att
21 #> get 1

22 #> 1

23 cls.att = 2
24 #> set 2

25 print cls.att
26 #> get 2

27 #> 2

28 del cls.att
29 #> del

1Properties only apply to instance variables, class variables cannot be wrapped in properties. Properties are also
limited to new style classes.
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Lines 1-3 show a standard class definition, with a variable att initialized with a value. Ordinarily,
access to this variable will access the object directly. However, in this case we wish to introduce an
indirection on this attribute.

Lines 5-14 define three functions that will receive calls upon access to att. Line 16 is the crucial
statement, which reassigns the variable att to an instance of a property given the three functions
defined above. The property mechanism will now dispatch all attribute access on att to get , it will
dispatch assignment on att to set , and it will call del just before att is garbage collected. The
functions get and set actually operate on an attribute called att, which is a variable known only
to these two functions, and serves to store the value of the attribute.2

Line 18 instantiates the class Class with an instance cls. This executes the init method, where
att is assigned a value. Since att is wrapped in a property, this assignment is routed through the
method set , which performs the actual assignment. Subsequent access and assignment to att passes
through get and set respectively, before the attribute is deleted, which triggers del .

Properties provide a practical solution to the problem of imposing logic on access or assignment to
selected attributes, but without changing the interface. Thus access to a property does not differ from
access to any other object from the client’s point of view.

2.2 Decorators

A decorator wraps a function much in the same way that a property wraps an attribute. A decorator is
a function which accepts the function it decorates, and returns a replacement function. The following
example demonstrates use of a decorator.

1 def decorator(func):
2 def new_func(x):
3 print "Received input value: %s" % x
4 res = func(x)
5 print "Returning output value: %s" % res
6 return res
7 return new_func
8
9 @decorator

10 def func(x):
11 return x+1
12
13 print func (1)
14 #> Received input value: 1

15 #> Returning output value: 2

16 #> 2

Lines 10-11 show a function definition. Line 9 shows the special syntax for applying a decorator to a
function. The decorator itself is defined on lines 1-7. The outer function decorator accepts a function
func, defines in its body a function new func, and returns new func. The net effect is that new func
replaces func in the module.

However, new func is defined in the scope of decorator, and is actually a closure (ie, it has acess to
the scope of decorator). And so in the body of new func there is a call to the original function func.
The result of that call is captured in res, and returned by new func. The parameter x was received
by new func, and is forwarded to func. But before and after this call other code can be executed.3

2This is purely as a matter of convention; nothing prevents other functions from access to att. However, a name
different from att is necessary, otherwise access to att in the body of get will trigger a recursive call to get , causing
infinite recursion.

3While it is not shown here, the Python interpreter provides further introspection into the arguments to func, their
names and values, and these values can be mutated in useful ways. For instance, it is possible to determine if the first
argument is called self and whether it is an instance of the class the function belongs to.
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The call to func can even be scrapped altogether.

2.3 Metaclasses

Formally, a metaclass relates to a class in the way that a class relates to an instance. The type (or
class) of an instance is its class; the type (or class) of a class is its metaclass. Python has a standard
metaclass used for all classes which do not define their own, called type.

Just as properties and decorators can be used to instrument attributes and functions one by one
respectively, metaclasses provide access to the whole namespace of a class. And thus metaclasses can
be used to set properties and decorators in bulk, programmatically. They can also mutate a class in
any other way. The following snippet exemplifies one use of a metaclass.

1 class Printable(type):
2 def __new__(cls , name , bases , dct):
3 dct[’__str__ ’] = lambda self:\
4 "I’m an instance of %s" % self.__class__.__name__
5 return type.__new__(cls , name , bases , dct)
6
7 class Class(object ):
8 __metaclass__ = Printable
9

10 print str(Class ())
11 #> I’m an instance of Class

Lines 7-8 define a class Class, without methods. A metaclass variable is set at class level (a class
attribute).

Lines 1-5 define a metaclass. The metaclass derives from type, not from object as classes do. And
it defines a meta-method new , which accepts the name of the class to be instantiated (in this case
Class), the bases classes of the class (object), and the members of the class (the attributes and
functions).

Line 3 sets the attribute str in the dictionary (namespace) of the class, which serves to override
the standard method str with a custom version. new then delegates to type. new , which
creates the class and returns it.

Line 10 prints the string representation of an instance of Class, which corresponds to the override on
line 3.

Python 3.0 will also have class decorators, an alternate form of mutating classes which is analogous
to function decorators.[10]

3 Strategies

3.1 In-source modifications

The bulk of the AOP frameworks for Python rely on mutating the namespace from within the module
itself. The demonstration snippets they provide typically show the aspects being applied in the same
module as the code to be instrumented. Figure 1 illustrates this pattern.

The objects that are to be instrumented have to be in scope by the time the instrumentation statements
are executed. Use of the objects must then follow the instrumentation statements. Additional modules
can be instrumented, either in-source, or in the main module, once they have have been imported into
the main module’s scope. Dynamic mutation is informally known as monkey patching.[11]
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import aop
import myaspects

class C...
aop.instrument(C, myaspects.C)

import mod1
aop.instrument(mod1.f, myaspects.f)

<./myaspects.py>

<lib/aop_framework/aop.py>

<./mod1.py>

source files aop framework library

aspects

runtime dependency

Figure 1: In-source pattern

3.1.1 Metaclass as hook mechanism

When an object is instantiated from a class, the init method is called on the instance. Just the
same way, a class is instantiated from a metaclass, and the new method is called as a constructor
for the class. This opens a window of time in which the class can be mutated before any clients will
have had the chance to use it. This can be seen as a static mutation, given that there is no case in
which a client may have accessed the class or its instances before the mutation took place.

Python objects deriving from object inherit the metaclass type. A class can override this by setting
the metaclass attribute at class level. This can only guarantee a static mutation if the metaclass
is set in the body of the class declaration, so that it takes effect when the class is compiled into a
code object. Otherwise the class may already have been accessed by clients, which would have seen
the pre-mutation state.

Pythius is perhaps the most referenced Python AOP framework (although its purpose is broader it
does include an AOP component) and uses the metaclass as a hook into the class. The following
example is from Pythius’s demonstration code.
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1 import aop
2
3 class OffByOne(aop.Aspect ):
4 ...
5
6 obo = OffByOne ()
7
8
9 class Student(object ):

10 __metaclass__ = aop.Metaclass
11 _aspect = obo
12 ...
13
14 student = Student ()

Line 3 begins a definition of an aspect. The aspect (in the form of a regular class) is then instantiated
on line 6. This can be readily moved to a dedicated “myaspects” module if so desired. Then follows
the definition of a class on line 9. This class sets a metaclass, pointing to the metaclass defined by the
AOP framework itself. Then the attribute aspect is set to the instance of the user defined aspect.
Finally, the class is instantiated.

All of the logic external to the operation of the user defined code (ie. the module minus all AOP
related code) can be moved to a separate “aspect“ module, except for the indispensable metaclass
declaration on line 10. (A user defined metaclass could just as well handle all the AOP logic, the
aspect attribute is not essential.)

Consequently, this technique does require setting the metaclass for all classes that are to be instru-
mented, but is not very invasive. However, it is not a general technique for AOP since it only applies
to classes. Functions and attributes at module level do not have an equivalent hook, so they may not
be instrumented.

3.1.2 Dynamic mutation

The obvious alternative is to intermingle the main program code with aspect code, mutating the
namespace without trying to keep the aspect code external (not necessarily the declaration of the as-
pect code, but certainly its application onto the program code). A number of Python AOP frameworks
take this approach, including Aspyct, Lightweight Python AOP, Logilab aspects and PEAK.

The following example is from Logilab’s tutorial code and is demonstrative of how all of these frame-
works work. They vary in the richness of services offered, but the invocation mechanism is the same
– binding in the current namespace.
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1 from logilab.aspects.weaver import weaver
2 from logilab.aspects.lib.logger import LoggerApsect
3 import sys
4
5 stack = StackImpl ()
6
7 # Push an element on the stack, the method call is not traced

8 stack.push("an element")
9

10 # Weave aspect code (log will be done on sys.stderr)

11 weaver.weave_methods(stack , LoggerAspect , sys.stderr)
12
13 # Push an other element, method call will now be traced

14 stack.push("another element")
15
16 # Unweave logger aspect

17 weaver.unweave(stack , LoggerAspect)
18
19 # Now, call methods aren’t traced anymore

20 stack.push("a third element")

Lines 1 and 2 load the AOP framework module, as well as one of the pre packaged aspect modules.
Line 5 instantiates an object from a user defined class, followed by line 8, which calls a method on it.
Next comes the application of the aspect in scope onto the user object. The next method call on line
14 happens on a mutated version of the push method, with a logging side effect. Finally, the aspect
can be detached from the object again.

Dynamic mutation has no restrictions on access to the code module, so it obviously has all the power of
any other Python code. All objects can be rebound and mutated at any time, which makes it possible
to enable and disable aspects dynamically. Unfortunately, this also means that static mutation, should
it be desired, becomes a matter of code style, as it is not enforced by the language in any way. This
could be a source of bugs if clients erroneously access objects before they have been mutated and
experience disparate results (especially with respect to side effects).

Dynamic mutation is also highly invasive in how it mingles the code in the module with aspect code.

3.2 External invocation

External invocation is an orthogonal approach to in-source modification. If modifying the source
is deemed undesirable, then code injection can still be achieved by invoking the program in a non-
standard way, eg. for the purpose of debugging or benchmarking.

Figure 2 illustrates this method. The source is untouched. Instead, the module in question is imported
and executed in an external module, where it can be instrumented.

3.2.1 External metaclass override

Metaclasses are declared either in the body of a class definition, a base class, or the global metaclass
variable.4 This makes it possible to set a global metaclass for all the classes defined in a module (pro-
vided they do not define a metaclass), which can mutate the classes accordingly. As mentionded in
section 3.1.1, mutation by metaclass is a static mutation.

The following example illustrates this method.
4For precise resolution order see [12].
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<./myaspects.py>

from main import C
import aop, myaspects

aop.instrument(C, myaspects.C)

c = C()
c.run()

<./mod1.py>

source files external invocation

aspects

<./main.py>

runtime dependency

Figure 2: External invocation pattern

1 # <./main.py>

2 class Number ():
3 def display(self):
4 print 45
5
6 if __name__ == "__main__":
7 Number (). display ()
8
9

10 # <./external.py>

11 class Verbose(type):
12 def __new__(cls , name , bases , dct):
13 print "Creating class", name
14 return type.__new__(cls , name , bases , dct)
15 def __init__(cls , name , bases , dct):
16 print "Initializing class", name
17 super(Verbose , cls). __init__(name , bases , dct)
18
19 env = globals (). copy()
20 env[’__metaclass__ ’] = Verbose
21 execfile(’main.py’, env , {})
22 #> Creating class Number

23 #> Initializing class Number

24 #> 45

Lines 2-4 define the class Number with a method display. Line 6 carries the idiomatic stanza for
modules that are executable, stating that the following code will execute if this module is the current
main module. Line 7 instantiates an object of class Number and calls the method display.
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Lines 11-17 define the metaclass Verbose. The new method prints output just before creating the
class, then calling new on its base-metaclass type (line 14). The init method is then called to
initialize the class5, which again delegates to the base of Verbose.

On line 19 the global namespace is cloned (so that it can be mutated) and the metaclass attribute
is set. Finally, the target module main.py is executed given the global namespace defined in env (note
that this dictionary also contains the attribute name , derived from the external.py module, which
will trigger the stanza on line 6), and an empty local namespace. What follows is output from main.py:
first the class Number is instantiated, with output from new and init , then comes the output
from the method display.

This method is not invasive, unlike the similar metaclass hook from secion 3.1.1, as it is external to
the module. However, it only applies to old style classes, which are deprecated.6 New style classes, in
the absence of a metaclass attribute in the class body, will inherit the metaclass type.

Furthermore, this approach only allows instrumenting the module being executed. Any classes defined
in modules imported by main.py will be compiled by the time they appear in main’s namespace, and
unaffected by main’s metaclass attribute. Other clients of the main module will not be affected
by this at all.

3.2.2 External dynamic mutation

Dynamic mutation in-source (3.1.2) has an external counterpart. The strategy is to import the modules
of choice and mutate the objects before use.

The following is an example.

1 # <./main.py>

2 def func ():
3 return 1
4
5
6 # <./external.py>

7 def dec(f):
8 def new_f(*a, **k):
9 print "---- dec ----", f.__name__

10 return f(*a, **k)
11 return new_f
12
13 import main
14 main.func = dec(main.func)
15 print main.func()
16 #> ---- dec ---- func

17 #> 1

The main module defines a function func. This is a function we wish to instrument. Lines 7-11 in the
external module define a simple decorator that wraps the function it is applied to. On line 14 the
name main.func is rebound with the decorator dec. Then the function is called.

The func object is only mutated in the external module, and other clients will see the unmodified
object, in contrast to the in-source variant of this method.

5Note that this is not the same init (self) method called on instances of a class, this init initializes the class,
not instances. The parameter list is evidence of this.

6Old style classes will not appear in Python 3.0, see [13].

10



3.3 Program transformation 3 STRATEGIES

3.2.3 Proxy objects

Proxy objects are widely used in technologies that handle remote procedure calls. The design pat-
tern can also be used to introduce indirection on local objects for the purpose of aspect oriented
programming. Spring Python is a framework that applies external invocation through proxy objects.

The following is an abridged example from Spring Python’s demonstration code.

1 # <./module.py>

2 class SampleService:
3 def method(self , data):
4 return "You sent me ’%s’" % data
5
6
7 # <./external.py>

8 from springpython.aop import MethodInterceptor , ProxyFactor
9 from module import SampleService

10
11 class WrappingInterceptor(MethodInterceptor ):
12 def invoke(self , invocation ):
13 results = "<Wrapped >" + invocation.proceed () + "</Wrapped >"
14 return results
15
16 factory = ProxyFactory ()
17 factory.target = SampleService ()
18 factory.addInterceptor(WrappingInterceptor ())
19 service = factory.getProxy ()
20
21 print service.method("something")
22 #> "<Wrapped>You sent me ’something’</Wrapped>"

Lines 1-4 show the program source, which defines a class SampleService. The external.py module
imports the main module and objects from the AOP framework. Line 11 defines the interceptor
WrappingInterceptor, which will be applied to the class SampleService. Lines 16-19 instantiate a
proxy for an instance of SampleService and apply the WrappingInterceptor on all methods of the
class. Eventually, the proxy object is bound to the name service and can be used just the same as
instances of the unmodified SampleService class.

According to the rationale of Spring Python, the method of proxy objects is intended to be used at
junction points between modules of a program (third party libraries, for instance), without the need
to touch the program source. This can indeed be realized to provide many connection-point types of
servies, like a security layer, as a container that catches all exceptions, and so on. But this would
make the framework more of a middleware than an aspect oriented implementation. After all, it is
the stated goal of AOP to be able to instrument code at any depth, not merely at the interface of a
component.

3.3 Program transformation

The strategies presented thus far require either changes to the code, or a custom execution model. They
are not out-of-band methods of instrumentation – they do not enable running the program completely
unmodified. aopy is a proof of concept AOP implemention I wrote to demonstrate an out-of-band
instrumentation technique whose effect is similar to that of AspectJ: the program is transformed in
the compilation phase and subsequently executed as normal.

The pattern is laid out in figure 3. The source files are compiled to bytecode, through a process of
program transformation. This transformation is defined by the specification (spec) file, which pairs
units of code injection (properties, decorators, metaclasses) with pointcuts (patterns to match against
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<./myaspects.py>

<./mod1.pyc>

source files

spec

aspects

<./mod1.py>

compiled files

import aop
import myaspects

aop.instrument('C', 
       myaspects.C)

build time dependency

runtime dependency

Figure 3: Program transformation pattern
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code entities in the source files). The compilation produces instrumented bytecode with references to
the aspects.

What follows is a demonstration of aopy use.

The program source

1 # <./main.py>

2 class Class(object ):
3 def __init__(self):
4 self.att = 1
5
6 def compute(self , x):
7 return x**x
8
9 cls = Class()

10 print cls.att
11 #> 1

12 print cls.compute (4)
13 #> 256

14 print str(cls)
15 #> < main .Class object at 0x7f61fd8a2210>

The code to be instrumented is held in the module main. Lines 2-7 define a simple class with one
attribute att and one method compute. The remainder demonstrates first instantiating the class,
then accessing the attribute, then calling the method, and finally showing the string representation of
the instance. This output will change as the class is instrumented.

A transformation

The module myaspects contains the code elements that will be injected into main.
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1 # <./myaspects.py>

2 def set_att(self , value):
3 print "set", value
4 self._att = value
5
6 def get_att(self):
7 print "get", self._att
8 return self._att
9

10
11 def decorator(func):
12 def new_func (*args , ** kwargs ):
13 print "Received arguments:", args , kwargs
14 res = func(*args , ** kwargs)
15 print "Returning result:", res
16 return res
17 return new_func
18
19
20 class Metaclass(type):
21 def __new__(cls , name , bases , dct):
22 def __str__(self):
23 members = ", ".join([m for m in dir(self )])
24 classname = self.__class__.__name__
25 return "%s instance: %s" % (name , members)
26 dct[’__str__ ’] = __str__
27 return type.__new__(cls , name , bases , dct)

Lines 2-8 define two functions set att and get att. These will indeed become methods in the class
main.Class, and accordingly take self as first parameter. Their purpose is to administer the attribute
att, which will become the internal name for the attribute att in the class main.Class. att which

will become a property.

Lines 11-17 define a decorator function decorator, which will wrap the method compute in main.Class.
This decorator defines a replacement function new func, which displays the arguments received before
calling the function it wraps, then makes the call, and then displays the result before returning it.

Lines 20-27 define a metaclass Metaclass, which will become the metaclass of main.Class. The
constructor function new injects a replacement for the standard str method, listing all the
members of the class.

1 # <./spec.py>

2 import aopy
3 from myaspects import *
4
5 aspect = aopy.Aspect ()
6 aspect.add_property(’main:Class/att’, fget=get_att , fset=set_att)
7 aspect.add_decorator(’main:Class/compute ’, decorator)
8 aspect.add_metaclass(’main:Class’, Metaclass)
9

10 __all__ = [’aspect ’]

The module spec defines the code injection that will be performed on main using the items in
myaspects.

The Aspect class is the public API offered by aopy. Line 5 creates a new Aspect instance, which
represents a semantic unit of code injection.

The next step is to populate the aspect with code instrumentation items. Every item consists of two
parts, a pointcut (a matching pattern), and an advice (a unit of code injection). Pointcuts are defined
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as pathspecs (pairs of paths); the first part is the path of the module,7 the second is the path of the
element in the module. Pathspecs are regular expressions.

Line 6 adds a property to the aspect. This means that an attribute, if matched by the pointcut, will
be wrapped as a property. The pathspec given will match an attribute att in a class Class, in a
module main.

Line 7 adds a decorator to the aspect. This means that any function (or method) matching the
pointcut will be decorated with this decorator. The pathspec given will match a function compute in
a class Class, in a module main.

Line 8 adds a metaclass. The pathspec will match any class named Class at the top level of a module
named main.

Line 10 sets the standard Python module attribute all , which lists the aspect objects to be
exported by this spec.

The transformed program

The following listing displays the transformed program. This file is not actually produced by aopy
– the transformed abstract syntax tree is compiled directly to a bytecode module. But its content
correponds to the code shown.

1 # <./main.py> transformed

2 import myaspects+
3
4 class Class(object ):
5 __metaclass__ = myaspects.Metaclass+
6
7 def __init__(self):
8 self.att = 1
9

10 @myaspects.decorator+
11 def compute(self , x):
12 return x**x
13
14 att = property(fget=myaspects.get_att , fset=myaspects.set_att)+
15
16 cls = Class()
17 #> set 1+
18 print cls.att
19 #> get 1+
20 #> 1

21 print cls.compute (4)
22 #> Received arguments: (< main .Class object at 0x7fe7c4274750>, 4) {}+
23 #> Returning result: 256+
24 #> 256

25 print str(cls)
26 #> Class instance: class , delattr , dict , doc , ...∗

Lines that differ from the original program source have been marked. A red plus + marks a new line,
a blue dot * marks a changed line.

The first (executable) line in the program, line 2, contains a new import statement, which brings the
objects that have been injected into scope. The injected import statement will always precede any
other imports.

7The module declared in a pathspec will be matched by name, it does not refer to any particular file, merely the
path of a module in a package hierarchy. If the pattern matches several modules with name main, all will be successful
matches.
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The next new line is line 5, which is a metaclass declaration, referencing myaspects.Metaclass. Any
existing metaclass declaration will have been replaced by this one.

Line 10 shows the decorator myaspects.decorator applied to the method compute. The injected
decorator will be applied after any existing decorators (an outer wrap).

Line 14 assigns a property on the attribute att, with the functions get att and set att from
myaspects. These functions will be called from within the class and behave just like any other
methods in the class. Any existing property on att will be replaced with this statement.

The remainder shows use of the class in an instrumented state.

First, we see the property in action. Line 17 now appears, because the set att function is called from
the init method when the class is instantiated. Line 19 appears because the set att method is
called when the attribute is accessed.

Line 21 invokes the decorator, which wraps compute. This produces lines 22 and 23. compute is called
with two arguments, the first is an instance of the class (the self argument), the second is the integer
bound to x in the function. There are no keyword arguments, so the dictionary kwargs is empty as
shown.

Finally, line 26 is changed because the call to str on the instance of Class is made to a custom
method str , set by the metaclass of Class.

The program transformation strategy has the marked advantage of being an out-of-band instrumen-
tation method. Consequently, all mutations are static and thus the lifetime of an object will never
affect its instrumentation state.

The disadvantage of this method is that the injected code is invisible to the programmer, and thus
more difficult to debug. Both the aspect modules and the spec modules are regular Python code, which
can be run standalone, and aspects can be applied in-source for testing. But the final instrumented
target code is not available.

aopy is written using the compiler module of the standard library, which replicates the C compiler
entirely in Python. This module is deprecated and will not be available in Python 3.0, see [14]. The
Python standard library retains functionality to parse modules into abstract syntax trees and perform
transformations on them through a new ast module. However, no compilation mechanism from AST
to bytecode has yet been announced (presumably a function to compile AST using the C compiler
will become available to complete the chain).

4 Evaluation

The task of evaluating the various strategies must start from a set of values which are thought as
important criteria for what a given implementation has to offer. The origin of aspect oriented pro-
gramming is said to be Gregor Kiczales’s paper from 1997 ([15]). The realization of this concept is
indeed AspectJ, which originates from the same research group. However, in the decade that followed,
dozens of implementations ([16]) have sprung up (I present those related to Python in this paper) and
it may be the case that AOP has evolved somewhat from the original concept. Notwithstanding this
possibility, I take the view that the purpose of AOP remains to be the practice of instrumentation
through code injection.

The following subsections offer an evaluation of the various strategies on criteria of interest. A sum-
mary is shown in the matrix below. I stress that this is not an evaluation of the AOP frameworks
themselves, it is an assessment of the strategies presented, and the potential they have. This does not
imply this potential has been realized in all, or even any, of the implementations.
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Strategy comparison matrix
Strategy Depth Reach Invasive Lifecycle Out-of-band
Metaclass hook Class Full Minimal Static No
Dynamic mutation Stmt wo/side eff. Full Yes Dynamic No
External metaclass Class Partial No Static No
External dynamic mut. Stmt wo/side eff. Partial No Dynamic No
Proxy objects Stmt wo/side eff. Partial No Dynamic No
Program transformation Stmt w/side eff. Full No Static Yes

Figure 4: Strategy comparison matrix

4.1 Injection depth

All strategies that either mutate the namespace from within the module itself, or which rely on
mediating access to the module, have access to the module’s full namespace and can rebind symbols
at will (including bindings in imported modules). This effectively enables injection down to the
statement level, excluding side effects.8 The strategies in this category are dynamic mutation (both
in-source and external) and proxy objects.

Program transformation has access to the full syntax tree and can can thus inject at the statement
level as well, but can also preempt side effects by mutating (or branching off from) statements before
they are executed.

Metaclass based strategies are more limited, in that they can only mutate members of a class (methods
and variables). Functions not contained in classes, as well statements at module level, cannot be
effected.

4.2 Reach

In-source modifications and program transformation are strategies that have full reach, because the
mutations happen in the module itself, so any client importing the module will see the mutated state
of the objects.

External invocation strategies, conversely, must insist that all clients access the module through an
intermediary, so they only have partial reach.

4.2.1 A counter example to full reach

Suppose there is a module that contains a function f. This is a function we wish to rebind for clients
of the code.

1 #<./module.py>

2
3 def f():
4 print("original function")

To that end, we create a proxy module that imports the code module and rebinds the function.
8Side effects here means calls to other modules or side effects unto the operating system at large. A statement which

deletes a file cannot be reversed by rebinding symbols post-execution.
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1 #<./proxy.py>

2
3 import module
4
5 def new_f ():
6 # module.f() # dangerous code, replace with:

7 print("instrumented function")
8
9 module.f = new_f

Clients of the proxy will now see the rebound version of the function:

1 #<./proxyclient.py>

2
3 from proxy import *
4
5 module.f()
6
7 #> instrumented function

But what if a client imports the module directly? The function appears in its original incarnation,
and we have failed to intercept this function call through our instrumented function.

1 #<./moduleclient.py>

2
3 import module
4
5 module.f()
6
7 #> original function

4.3 Invasiveness

Strategies that employ external invocation are uninvasive, because all the instrumentation is external
to the source module. This also applies to program transformation

The metaclass hook method is invasive, but in a minimalistic way. The metaclass has to be set in
each class, but the rest of the aspect code can be external.

Dynamic mutation mixes source code with instrumentation in the same module and is therefore in my
view quite contrary to the objective of AOP: separating source code and aspects. The two parts can be
kept separate in the module by convention, first listing all the objects, and then the instrumentation
declarations, but that is still only a matter of convention and therefore not a firm level of separation.

4.4 Instrumentation lifecycle

Metaclass based strategies are static mutations, which guarantee that the object will have been mu-
tated by the time it comes into scope and clients can access it. Program transformation is also a static
mutation, because the module is compiled to bytecode in mutated form before it is ever executed.

Proxy objects is a dynamic mutation method that is intended to be used statically. Since it does not
have full reach, it becomes a matter of convention to enforce that objects from a module are always
accessed through proxy objects. Proxy objects could also be used dynamically to enable/disable
instrumentation.

Dynamic mutation strategies are, as the name suggests, dynamic. As with proxy objects, they can be
used statically by convention, but their applicability is perhaps more valuable as a genuinely dynamic
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method of enabling instrumentation in response to stimuli in the course of execution (for instance to
attach a logger to a misbehaving component just long enough to diagnose a problem).

4.5 Out-of-band

Program transformation is the only strategy that allows out-of-band instrumentation, that is code
injection without either changes to the source files or a custom invocation model.
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